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In this paper, we present two new methods for identifying NMR
spin systems. These methods are based on nonlinear adaptive
filtering. The spin system is assumed to be time-invariant with
memory. The first method uses a truncated discrete Volterra series
to describe the nonlinear relationship between excitation (input)
and system response (output). First-, second-, and third-order
kernels of this series are estimated employing the least mean
square (LMS) algorithm. Three parallel filters can then model the
NMR spin system so that its output is no more than simple sum of
three convolution products between combinations of the input
signal and filters coefficients. It is also shown that the contribution
of the Volterra second-order term to the total system response is
neglected compared with the contributions of the first- and the
third-order terms. In the second identification method, the output
signal is related to the input signal through a recursive nonlinear
difference equation with constant coefficients. The LMS algorithm
is used again to estimate the equation coefficients. The two meth-
ods are validated with a simulated NMR system model based on
Bloch equations. The results and the performances of these meth-
ods are analyzed and compared. It is shown that our methods
permit a simple identification of NMR spin systems. The field of
applications of this study is promising in the optimization of NMR
signal detection, especially in the cases of low signal-to-noise ratios
where optimum signal filtering and analysis must be performed.
© 2000 Academic Press
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1. INTRODUCTION

terra series, to describe the relation between excitation and t
nonlinear behavior of the system have appea@&®)( The
system response can, in principle, be written as

y(t)=EJ f ho(7e, -0y Tp)
p=0Jgo 0

X X(t—= 7)) ...x(t—71)d7y ... d7,. [1]
The p-dimensional time functions,(r,, 75, ..., 7,) are

called Volterra kernels and describe the system characteristi
Since the Volterra series of Eq. [1] does not lead to orthogon
expansion, the estimation of Volterra kernels from a give
excitation—response data set is far from triviaJ 4).

Blimich and Ziessow 2) proposed an expansion of the
nonlinear system response into a functional integral series wi
heuristic ansatz for the Volterra kernels. They deduced that tl
NMR system is equivalent to two parallel linear bandpas
filters with memory followed by a nonlinear system without
memory. This system can represent a nonlinear infinite impul:
response filter (IIR) which depends on the excitation nature

Kaulischet al. (3) used the fact that the Volterra series car
be orthogonalized in a Wiener series if the excitation is
Gaussian white noise of zero mean and he calculated t
Wiener kernels employing a cross-correlation technique. All ¢
his calculations were conducted on complex stochastic excit
tion.

Due to the nonlinear characteristics of the NMR spin system,In the search for optimum NMR signal detection and pro

there is no general way to deduce the system respgts¢o

cessing, it can be of great value to introduce the nonline:

an arbitrarily shaped excitation pulsé). A variety of meth- characteristics of NMR spin systems. In fact, when the signa
ods have been proposed to solve the problem. Hdluged to-noise ratio is low, optimum filters are necessary to extra
perturbation theory and linear system analysis to obtain gfe NMR signal. Actually, most of the NMR signal processing
analytical solution for the Bloch equations. In his arguments/stems employ linear filters. Increasing excitation levels me
and calculations, concerning the case where a strong gradieqrisduce distorted spectrum resulting from linear processing
applied to the object, he assumed that the transfer functionepfionlinear spin response. So, in order to optimize NMR sign
the system was flat over the spectral bandwidth of the excigetection and analysis, it is useful to consider nonlinear filter
tion signal. If this is not the case, the method cannot be appligte implementation of such filters requires knowledge of th
directly. nonlinear behavior of the system. Moreover, more accura

Other methods, using a functional expansion, like the Vasignal spectral analysis can be conducted if one could identif

in a practical manner, the system under investigation.

! To whom correspondence should be addressed. In this paper, we propose two new methods for the ident
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fication of NMR spin systems. These methods are based on , - ™ Z

nonlinear adaptive filtering techniques. In the first method, the \_ ° \J

input—output relationship of the NMR system is described byFIG. 1. A 1D cylindrical homogeneous object 25 cm in length. The

a truncated discrete Volterra series. The first three kernels@fitudinal and the transversal relaxation times are, respectiVelys 100

this series are estimated. The contribution of each term of te T, = 10 ms for all the object voxels.

Volterra series to the total system response is illustrated. It is

shown that the second-order contribution is neglected. In the

second identification method, we use a recursive nonlinedfic-modulated RF pulse of 1 ms is used as an excitatic

infinite impulse response filter to model the NMR spin systengignal.

In this latter case, system identification is equivalent to the Relaxation operators are applied to calculate the results

estimation of the IIR filter coefficients. the relaxation processe3(andT,) and the changes in the
The validity of the two methods is demonstrated with sinphase of the magnetization, due to applied magnetic fie

ulated NMR signals. The advantages and the limits of eaghadients, local magnetic field inhomogeneities, and chemic

method are analyzed. Our future work will validate thesghifts.

identification approaches on real NMR signals. All of the routines of signal simulation are written in C
language using the LINUX operating system. The simulatio

2 NMR SIMULATED SIGNALS generates a signal (free induction decay, FID) by summing tt

transverse magnetization of all of the object points at discre

2.1. Simulation Method time intervals determined by the sampling rate. This simulate

signal is detected in the rotating frame of reference. In ot
Many articles concerning the computer simulation of NMRBimulations, the input and the output signals are normalize
images have been publishes-g). The basic idea of simula- with respect to their maximum amplitudes.
tion is to solve numerically the Bloch equations, in the rotating
frame, for each point (voxel) in the object, at each sample #32. Examples of Simulated Signals
gme qurmg th? pulse sequence. This method is valid forWe consider, for simplicity, a 1D finite cylindrical homoge-
escribing the time evolution of spin systems. In our paper, we

o i . S eous object of axis OZ (Fig. 1). The transversal and th
are limited to NMR signal simulation in the case of uncouplep o S .
spins 6-9). ongitudinal relaxation times[, and T, are, respectively, 10

. . . . nd 100 ms, for all the object voxels. This object is placed i
Our simulation program starts by defining an object (1D, 2@’ 0.1-T static magnetic field. We neglect the effect of loce

or 3D) using a special computer function that creates a box, a P " : .
. . : magnetic field inhomogeneities and chemical shifts.
sphere, a cylinder, or any shape given by mathematical expres; . . . .
; . o : ; As an illustration of the simulated (FID) signals, let us take
sion. This object is spatially sampled, with respect to Shap- . . . |
, ) . -1he case where a strong linear field gradient (2.5 mT/m) |
non’s sampling theorem, into small volumes (voxels) wit

defined dimensions, local magnetization vector, proton densiff;p“(ad along the cylinder axis during a RF excitation puls

o L . We calculate the FID in unswitched gradient, i.e., the
and longitudinal and transversal relaxation tim&€s &ndT,). . : . ) . . . .

. s . . . radient is still applied during the signal sampling perioc
Static magnetic field inhomgeneities and chemical shifts can pe .
; . . S , 10. Figure 2a shows the system response (FID) to a 1-n
included in the object definition.

.__..RF rectangular pulse of 4.25 MHz (Larmor frequency at 0.1 T
The effect of a rectangular RF pulse on a local magnetization ) o
i . . . . with a flip angle of 90°. It can be seen that the form of the
vector is described by a rotation matrix operator with the o
L . ... response approaches the shape of the RF excitation pulse. T

knowledge that relaxation is neglected during the excitation

period 6-10. This operator can also take into account thresult confirms the early work of Hoult and Mansfield anc

T . ) -Morris (1, 10. In Fig. 2b, we plotted the FID resulting from the

presence of magnetic field gradients. RF pulses, with varying .~ % o .
. 2 a%pllcatlon of a 90° sinc-modulated RF pulse of 1 ms. Thi

B, field, are modeled by dividing the waveform of the puls . . . . o
. - C . .fatter FID is used as a reference signal in our identificatio
into finite samples in time (small rectangular pulses with dif- .
. o : . ; .schemes (see Sections 4, 5, and 6).

ferent intensities). Each sample is described by its rotation
matrix. These matrix operators are applied successively to the
magnetic moment, so that the set is quite similar to the appli-
cation of one pulse with amplitude modulation. Any amplitude
modulated RF pulse can be simulated by this technique. F%,q
different types of RF pulses are currently available: rectangu-
lar, Gaussian-modulated, sinc-modulated, and random noiséet x(n) andy(n) represent the input and the output, respec
modulated pulses. Each of them is defined by its duratiaively, of a discrete-time and causal nonlinear system wit
central frequency, spectral bandwidth, phase, and flip angle.nemory. The relationship between input and output can b

our identification methods (see Sections 4, 5, and 6), a 9§8nerally, expressed as

3. IDENTIFICATION BY ADAPTIVE VOLTERRA
FILTERING

% Volterra Series Expansion for Nonlinear Systems
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FIG. 2. Simulated FIDs signalg(n) in response to a 90° rectangular RF pulse of 1 ms (a) and to a 90° sinc RF pulse of 1 ms (b).)Gaxtee400
samples= 1 ms.
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y(n) =f[x(n), x(n—=1), ..., x(n—=N+ 1), [2]
NMR Spin Model

where ) is the sample number amdlis the memory length of I:]T
the system. The direct identification approach of a system is to )
determine the functiof that minimizes some suitable defined — adaptive Volterra filter
error between a desired output sequep@® and the actual Input signal / e
output sequenc§(n). However, for nonlinear systems, this Linear filter n
approach leads generally to equations that cannot be solved in ’— 7 v
any practical manner, which is the case for NMR spin systems. L h—'@e(,,)

A solution for this problem is to consider a polynomial Quadratic filter error
approximation to the function appearing in Eq. [2] so that the /
system under investigation can be easily characterized and
analyzed. FIG. 3. Block diagram of second-order nonlinear adaptive identification

Consider the input—output relationship of Eq. [2]. We ad$ is a delay element.
sumed that the functiofis sufficiently regular in the neigh-
borhood of the origin. In this cafeadmits a discrete Volterra
series expansion which converges in a suitable neighborhatisicussed latter. Our goal now is to identify the first- and th
of the origin (L1). By truncating this series to a finite numbesecond-order kernels employing adaptive filtering technique
of terms, we obtain an approximation of the input—output Figure 3 shows the identification block diagram. The de
relationship of the form layed input signak(n) is applied to the system under investi-
gation which gives the reference signgin). The adaptive
filter would try to estimate the desired response sigria)

N-1 N-1 N-1 . . . .
. ~ ~ using a second-order truncated Volterra series expansion in
Y(n) = 2 hl(ml) X(n - ml) + E E h2(m11 m2) input Signa'x(n) as

mi=0 mi=0 mp=0

Xx(n—m)x(n—my,) + ... N_1

N-1 N-1 N-1 y(n) = Z ﬁl(ml:n) x(n —my)
+ 2 > > h(mymy, L my) m=0
m=0 mx=0 mp=0 N-1 N-1 ~
X x(N = m)x(n—my) ...x(n—m,). [3] + 2 ha(my, myin) x(n = my) x(n = my).
mi=0 mp=mg
In this equation,ﬁp(ml, m,, ..., m,) is the pth-order [4]

discrete Volterra kernel of the system. System identification is ~

equivalent to the choice of these kernels which in turn chdr:(m;:n) andh,(m,, m,:n) in Eq. [4] are the adaptive filter
acterize the system behavior. We can have the desired degreefficients at timerf). These coefficients are iteratively up-
of accuracy by a suitable choice of the orgeras well as dated at each time so as to minimize some function of tf

system memory lengtN. guadratic error signal defined as
We assume, in the next section, that the Volterra kernels are
symmetric, i.e.h,(m;, m,, ..., m,) is left unchanged for any e(n) = |y(n) — 9(n)|% [5]

of the possible p!)* permutations of the indicas,, m,, .. .,
m, (12). This does not entail any loss of generality, but the £qr notational simplicity as well as ease of performanc

complexity of Eq. [3] is reduced, especially in the case Qfnajysis, it is usual to rewrite the expressiorjgf) in another
high-order kernels|§ = 3), and consequently the calculationm, using vector notatiofig12).

time is considerably reduced.

§(n) = AI(n) Xy(n) + HI(n) Xy(n), 6
3-2. System Identification by Second-Order Volterra Series y(m 1 X 2(1) Xo() [6]

For calculation simplicity and without loss of generality, letvhereH,(n) is the coefficient vector of the first-order kernel
us consider, for the first time, a second-ordpr= 2) Volterra (linear filter) andH,(n) is the coefficient vector of the second-
series expansion. The choice of the memory lengtill be order kernel (quadratic filter) at timen)

%1 Denotes the factorial function. *[.]" denotes matrix transpose.
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Hy(n) = [h,(0:n), hy(1:n), ..., hy(N —1:n)]" [7] 4-1. Choice o5, and 5, for NMR Signals

A(n) = [ﬁZ(O 0n) ﬁz(O i), ... In NMR, the input signak(n) and the output signay(n) of
S R the system are, in general, nonstationary. The stability of tt
h,(0, N — 1:n), hy(1, 1), ..., adaptive filter depends largely o, i.e., it depends o#, and

5, (see Egs. [14] and [15]). When using fixed values&pand
d,, instability appears for impulsive input signals. To preven

. o this phenomenon, we consider variableand 6, of the form
X;(n) andX,(n) are the input vectors to the adaptive filter at

time (n). They are defined as

hy(N—1,N—1:n)]". 18]

B1
81(n) = 5~ [16]
Xi(n) = [x(n), x(n = 1), ..., x(n =N+ 1]" [9] No(n)
Xo(n) = [x2(n), x(N)x(n = 1), ..., 5,(n) = (NO'EW (17]

x(n)x(n — N+ 1), x*(n — 1),
x(n — 1)x(n — 2) x3(n — N + 1)]7 B. and B, are small positive constant factore’(n) is an
. ' estimation of the input signal power at tima)( The most

[10] direct estimation ofri(n) is given by (3)

No—1

a(n) = oy + N E x2(n — i), [18]

At each time ), optimum coefficients are determined using
a least mean squares algorithm (LMS). This recursive algo-
rithm permits one to calculate new coefficients at time+

1). The initial coefficients values at (= 0) are forced to zero. ; i itiv nstant which avoids division by zer
The nonlinear adaptive filter is then defined by three recursi%qe €00 1S a posilive consta lich avolds division by zero
e parametelN,, time observation window, is the period

equations 12, 13: during which the signal could be considered stationary.
e(n) =y(n) — HI(M Xy(n) = HI(MXo(n)  [11] 4.2 |dentification Results

Hi(n + 1) = Hy(n) + 8:Xy(n)e(n) [12]  The adaptive identification algorithm is programmed usin

A,(n + 1) = A,(n) + 8,X,(n)e(n). [13] MATLAB. As an illustration of the identification results, let us
consider the object described in Fig. 1. The input sigia) is

a 90° sinc pulse of 1 ms. The correspondent output sigmél

In these equationsy, and 6, are positive constant factors;

(called adaptive gains) that control the stability of the adapti\'/%the one shown in Fig. 2b. The convergence of the algorith

filter and its rate of convergence. If we definé as an input IS obtained rapidly with a suitable choice of the paramegars

signal power, it could be shown that the stability of the adaf-’ No, andor,. For exampleBl_ = 0.25,B, = 0.0025,0, =
tive filter can be assured & and 3, satisfy (L3) .08, and\, = 20 are chosen, in the caseNf= 64, to assure

convergence and to have a minimum residual mean-sque
error (MSE). We introduce a delay elemeit)(in the identi-

0< 8, < [14] fication block diagram (Fig. 3) for convergence rapidity anc
No results enhancemerit4). The value oD depends on the filter
2 orderN and on the model to estimate. Rdr= 64 the delay
0<§,< (No2) 2" [15] element is of 200 samples. An estimation of the first- and tt
X

second-order kernels is then obtained. These kernels are pl
ted in Figs. 4a and 4b for two values of the filter ordir €

84 and 128). In the two cases, the first-order kernel is
FID-like function, which is a well-known resul2( 4). The real
and the imaginary parts of the Fourier transform of this kerne
are proportional, respectively, to the absorption and the di
persion components (see Fig. 5).

In the next section, we will use the adaptive Volterra filter t
model the NMR nonlinear system.

4. NMR SYSTEM IDENTIFICATION BY SECOND-ORDER
VOLTERRA ADAPTIVE FILTERING

The recursive algorithm needs some attentions in the choi . .
of its parameters like the adaptive filter ordér(the memory 43. Choice of the Filter Order N
length) and the adaptive gaing,(and §,). These parameters After convergence of the adaptive algorithm, the twc
control, in addition to the stability, the accuracy of the resultesulting kernels are the best description of the NMR mod:
during the convergence of the algorithm. in the sense of the mean-square error. In this case, only t
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FIG. 4. (@) The first- and the second-order kernéigm,) andh,(m,, m,), for N = 64. (b) The first- and the second-order kernalgm,) andh,(m,
m,), for N = 128.

filter orderN controls the accuracy of results. This paramfilter order should be greater than the effective transvers
eter is chosen to minimize the residual MSE after converelaxation timeT? divided by the sampling period.:
gence. We show in Fig. 6 the variation of the minimum

residual MSE, averaged over the last 100 samples, as a .

function of N. We observe that foN larger than 64 the N > E [19]
residual mean-square error is practically unchanged. The Te
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FIG. 5. The real (absorption) and the imaginary (dispersion) parts of the Fourier transform of the first-order kekhet f64.
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FIG. 6. The residual mean-square error (MSE) as a function of the filter dtder

This result assumes that the period of the input signal iis the system response. In order to emphasize this fact and
greater than four time$%. Once noncorrelated experimentahave more accurate results, we extend our development to |
noise is present, the accuracy of the results is expectedthiod order.
improve withN increasing beyond 64.

5. NMR SYSTEM IDENTIFICATION BY THIRD-ORDER

4-4. Discussion VOLTERRA ADAPTIVE FILTERING

We show that the NMR System can be modeled by a |inearWhen we take into account the third-order kernel in the
filter in parallel with a quadratic filter with no feedback as thayolterra series, Eq. [3] becomes
of Blimich and Ziessow’s modeR). This model is tested by

applying an excitation signaln) (a 90° sinc RF pulse of 1 ms) N-1
to the filters system input. The resulting output signalNo= 9(n) = > hy(min)x(n — m,)
64 is shown together with the reference sigy@l) in Fig. 7. m=0
The best accuracy can be obtained for higher filter orders. N-l N-1
Itis important to evaluate here the contribution of each filter, + > > h,(my, My:n)x(n — my) x(n — m,)

i.e., the linear part and the quadratic part. The results are
presented in Fig. 8. We can see that the contribution of the

mi=0 mp=mg

second-order filter, in the system response, is small with re- NTEONTLOoNTL

spect to the contribution of the linear filter. In fact, in NMR, + 2 2 2 hy(my, my, mgin)

since the response changes sign when the RF excitation is My =0 Mz=my Ms=m;

changed in sign, the response is an odd function of the exci- X X(n = my)x(n — my) x(n — my). [20]

tation, and all even-order responses of Volterra series disap-
pear @). However, in our identification, the truncation of theConsequently, the third-order nonlinear adaptive filter is de
Volterra series leads to some contribution of the second ordiered by



46 ASFOUR, RAOOF, AND FOURNIER

—— Reference signal

Filters system output i

550 B0 550 00

(n)

FIG. 7. The reference FID signal and the signal at the output of the filters system (linear and quadratic filters) for a 90° sinc-modulated input sign
ms. The filter order iN = 64.

e(n) = y(n) — HI(n) X,(n) angles. However, in the case where the SNR of the NMR sign
~ - is low, taking into account the third-order term may permi
— H2(n) Xy(n) = Hs(n) Xs(n) [21]  more accurate signal processing and analysis.
Ay(n + 1) = Ay(n) + 8:X5(n)e(n). [22] Our model is attractive since the expansion is a linez
combination of a nonlinear function of the input signal. The
output signal is no more than simple convolution product
Between combinations of the input signal and the kernels. Th
fact is important for real implementation of optimum NMR

Xa(n), gnd XZ(r.]) are dgﬁned by Egs. [7], [8], [9]' and [10]‘signal detection and processing systems and for future dev
respectively 3, is a positive factor that must satisfy<0 §; < : . L
opment of accurate spectral analysis and signal estimation. F

2/(Na?)® to assure the stability of the adaptive filter. In prac

. ) . . example, when the NMR signal-to-noise ratio is low, identi:
tice, we use a variable form f@; which changes with respect_ . L .
t0 02 fying the NMR system in this practical manner may conduct ti

For N = 64, the convergence of the algorithm is obtainetdhe optimum matched filter.

rapidly and we get an estimation of the first three Volterra
kernels. In this case, three parallel filters (first, second, and
third order) model the NMR spin system. Figure 9 shows the
reference signal together with the output of the filters system
for the same excitation signal (a 90° sinc RF pulse of 1 ms).
The accuracy of the results is improved (compared with Fig. 7). The major problem associated with Volterra series represe
The contributions of the three filters to the total system réation of nonlinear systems is that, in some cases, a very hi
sponse are illustrated in Fig. 10. This time, the second-ordéier order (a large number of coefficients) is required tc
contribution is very small compared to the first-order and trescribe the nonlinear model. In such a case, the discre
third-order contributions. The third-order term appears cleari{olterra series is not the adequate model. Consequently, it
and its maximum contribution is about 6% of the total respong@portant to search for an alternative model. One such mod
of the system. We emphasize the disappearance of even ordetthe recursive nonlinear IR filter whose input—output rela
in the Volterra series. It is important to notice that the linedronship is governed by a recursive nonlinear difference equ
approximation of NMR system is good even for large flipion with constant coefficientslp).

H(n) is the coefficient vector of the third-order kernel at tim
(n) andX;(n) is the correspondent input vectét,(n), H,(n),

6. ADAPTIVE FILTERING IDENTIFICATION USING
RECURSIVE NONLINEAR IIR FILTER
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FIG. 8. The contributions of the first- and the second-order terms to the system response. The second-order term forms less than 2% of the total re:

6-1. Recursive Nonlinear Systems At each samplen(), the output signal of this recursive system
is_calculated using the input signal at tim® @nd at time 0 —

The simplest of nonlinear recursive systems is the one ir)1 but also using the output signal at time £ 1)

which the input—output relationship is given bi2{

6-2. Adaptive Recursive Identification

N—1
y(n) = > c(i)y(n —i) In this section we would like to identify a NMR spin system
i=1 with a recursive nonlinear IR filter. In other words, we will try
Ne1 N1 to calculate the coefficient(i), b(i, j), andc(i) (the coeffi-
- . . cients of the IIR filter) using, once again, an adaptive filterin
- Z) Z‘l b(i, Dy(n = ))x(n =) technique. The identification block diagram is shown in Fig
12. For a given value oN, the adaptive filter estimates the
N-1 output signaly(n) using the lastN values of the input signal
+ > a(i)x(n —i). [23] x(n) and the lastil — 1) values of the reference signain)
i=0 (12, 15. The coefficients are updated at each sampleir

order to minimize the quadratic error betwegm) and{(n).

This system 'repregentqtion can model'nonlinear systems Wfile recursive nonlinear adaptive filtering algorithm is define
fewer coefficients, i.ea(i), b(i, j), andc(i), than the Volterra by

series representation. The block diagram of a recursive non-
linear system for the case df = 2 is shown in Fig. 11. Here,

— _ AT
Z ' represents the unit memory element that simply delays the e(n) = y(n) — A(m) X(n)

signal passing through it by one sampd€0) anda(1l) are — BT(n) XY(n) — CT(n)Y(n) [25]

called forward coefficients and(1) is the backward coeffi- - A

cient. b(0, 1) andb(1, 1) are the nonlinear coefficients. AN+ 1) = Au(n) + 8X(n)e(n) [26]

Equation [23] is then written as B(n + 1) = B(n) + 8,XY(n)e(n) [27]
y(n) = e(1)y(n = 1) + b(0, Dy(n - 1x(n) Cln+ 1) = Cln) + s:¥(ne(n), (28]

+0(1, Dy(n = Dx(n = 1) wheree(n) is the calculated error between the actual respon:
+ a(0)x(n) + a(1)x(n — 1). [24] 9(n) and the reference signg(n), and
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FIG. 9. The reference FID signal and the signal at the output of the filters system (linear, quadratic, and third-order filters) for a 90° sinc-modulate
signal of 1 ms. The filter order il = 64.
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FIG. 10. The contributions of the three filters to the system response. The second-order term is neglected. The third-order term contributes to abo
the total response.
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[ b(0,1)

R
[ b(l,1)

LR

FIG. 11. Block diagram of a recursive nonlinear system of order

N = 2.
A(n) = [a(0:n), A(1:n), ..., &N — 1:0)] [29]
B(n) = [b(0, 1), b(0, 2:n), ... ,B(N—1,N - 1:n)]

[30]
&(n) = [&(L:n), &2:n), ..., &N — 1:n)] [31]

are the adaptive filter coefficient vectors at time).(The
vectors

X(n) =[x(n), x(n—=1), ..., x(n=N+1)] [32]
XY(n) = [x(n)y(n — 1), x(n)y(n —2), ...,
XnN=N+21yh—N+1)] [33]
Y(n)=[y(n—=1),y(n—=2),...,y(n—=N+ 1)]
(34]

are the input vectors to the adaptive filter. Finady, ,, and
5. are the adaptive gains that are calculated at each tint (
assure the stability of the algorithm.

y(n
o) ——l_il* NMR Spin Model PR . ()]

e(n)

/

Recursive Model

/

)

49

6-3. Results of the Recursive Nonlinear Identification

Consider the 1D homogeneous object described on Fig.
Let us take, once again, a 90° sinc-modulated pulse of 1 ir
The system response (reference signal) is the one presentec
Fig. 2b. The coefficienta(i), b(i, j), andc(i), obtained after
convergence, are plotted in Fig. 13 in the caseNofE 24.
These coefficients are the best estimation of the NMR model
the sense of mean square error. Figure 14 shows the refere!

a(i)

005

FIG. 12. Block diagram of the identification of NMR system with a FIG. 13. The coefficients of the recursive nonlinear IIR filter obtained by

recursive nonlinear syster® is a delay element.

adaptive filtering folN = 24.
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—— Reference signal

s P-4 of

------- Signal calculated by the
coefficients of Fig. 13.

[oJ:]

04

0z

FIG. 14. The reference signal and the signal calculated with the coefficients of Fig. 13. The excitation is a 90° sinc-modulated signal of 1 ms.

signal together with the signal calculated using the coefficiertexchniques. The first method is based on discrete Volter
of Fig. 13 (i.e., the signal at the output of the IR filter). Theseries development of the system response. The first thr
initial values of this latter signal are forced to zero. kernels of this series are estimated using the least mean squ
The key advantage of this recursive nonlinear model &gorithm. Three parallel filters modeled the NMR spin syster
that it is possible to represent the NMR systems with relge that its output is no more than simple convolution produc
tively fewer coefficients when compared with Volterra syshetween filters coefficients and combinations of the input sic
tem representation. The residual mean-square error—aft@t. The contribution, to the total system response, of th
convergence—for the recursive model of order 24 is smallsecond-order term of the Volterra series is shown to be n
than the residual MSE for the Volterra model of order 64lected. In the second method, the input—output relationship
However, the recursive model cannot be reduced to separtite system is described by a recursive nonlinear differen
convolution products as the Volterra model can. Thus, thégjuation with constant coefficients. The LMS algorithm i
recursive model cannot replace entirely the Volterra repremployed to calculate these coefficients.
sentation. Each model has its advantages and its specifiOur identification methods can be useful for better time
limits. The issue of which one to use depends on the natutescription and nonlinear spectral analysis of NMR signal
of application. In practice, the Volterra model could b&hey are promising for real implementation of optimum NMR
employed in filtering problems where there is a requiremesignal detection and processing systems. Our future work w
for linear-phase characteristics, especially for the lineaalidate these models on real NMR signals.
part. If there is no requirement for linear-phase, either the
Volterra model or the recursive model may be employed.
However, if some phase distortion is tolerable, the recursive REFERENCES
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