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In this paper, we present two new methods for identifying NMR
spin systems. These methods are based on nonlinear adaptive
filtering. The spin system is assumed to be time-invariant with
memory. The first method uses a truncated discrete Volterra series
to describe the nonlinear relationship between excitation (input)
and system response (output). First-, second-, and third-order
kernels of this series are estimated employing the least mean
square (LMS) algorithm. Three parallel filters can then model the
NMR spin system so that its output is no more than simple sum of
three convolution products between combinations of the input
signal and filters coefficients. It is also shown that the contribution
of the Volterra second-order term to the total system response is
neglected compared with the contributions of the first- and the
third-order terms. In the second identification method, the output
signal is related to the input signal through a recursive nonlinear
difference equation with constant coefficients. The LMS algorithm
is used again to estimate the equation coefficients. The two meth-
ods are validated with a simulated NMR system model based on
Bloch equations. The results and the performances of these meth-
ods are analyzed and compared. It is shown that our methods
permit a simple identification of NMR spin systems. The field of
applications of this study is promising in the optimization of NMR
signal detection, especially in the cases of low signal-to-noise ratios
where optimum signal filtering and analysis must be performed.
© 2000 Academic Press

Key Words: NMR; system identification; nonlinear adaptive
filtering; Volterra series; recursive nonlinear filter.

1. INTRODUCTION

Due to the nonlinear characteristics of the NMR spin sys
there is no general way to deduce the system responsey(t) to
an arbitrarily shaped excitation pulsex(t). A variety of meth
ods have been proposed to solve the problem. Hoult (1) used
perturbation theory and linear system analysis to obtai
analytical solution for the Bloch equations. In his argum
and calculations, concerning the case where a strong grad
applied to the object, he assumed that the transfer functi
the system was flat over the spectral bandwidth of the ex
tion signal. If this is not the case, the method cannot be ap
directly.

Other methods, using a functional expansion, like the

1 To whom correspondence should be addressed.
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terra series, to describe the relation between excitation an
nonlinear behavior of the system have appeared (2, 3). The
system response can, in principle, be written as

y~t! 5 O
p50

` E
0

`

. . . E
0

`

hp~t1, . . . , tp!

3 x~t 2 t1! . . . x~t 2 tp!dt1 . . . dtp. [1]

The p-dimensional time functionshp(t 1, t 2, . . . , t p) are
called Volterra kernels and describe the system character
Since the Volterra series of Eq. [1] does not lead to orthog
expansion, the estimation of Volterra kernels from a g
excitation–response data set is far from trivial (3, 4).

Blümich and Ziessow (2) proposed an expansion of t
onlinear system response into a functional integral series
euristic ansatz for the Volterra kernels. They deduced tha
MR system is equivalent to two parallel linear bandp
lters with memory followed by a nonlinear system with
emory. This system can represent a nonlinear infinite imp

esponse filter (IIR) which depends on the excitation natu
Kaulischet al. (3) used the fact that the Volterra series

e orthogonalized in a Wiener series if the excitation
aussian white noise of zero mean and he calculate
iener kernels employing a cross-correlation technique. A

is calculations were conducted on complex stochastic e
ion.

In the search for optimum NMR signal detection and
essing, it can be of great value to introduce the nonli
haracteristics of NMR spin systems. In fact, when the sig
o-noise ratio is low, optimum filters are necessary to ex
he NMR signal. Actually, most of the NMR signal process
ystems employ linear filters. Increasing excitation levels
roduce distorted spectrum resulting from linear processi
nonlinear spin response. So, in order to optimize NMR s
etection and analysis, it is useful to consider nonlinear fi
he implementation of such filters requires knowledge o
onlinear behavior of the system. Moreover, more acc
ignal spectral analysis can be conducted if one could ide
n a practical manner, the system under investigation.

In this paper, we propose two new methods for the id
1090-7807/00 $35.00
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38 ASFOUR, RAOOF, AND FOURNIER
fication of NMR spin systems. These methods are base
nonlinear adaptive filtering techniques. In the first method
input–output relationship of the NMR system is describe
a truncated discrete Volterra series. The first three kerne
this series are estimated. The contribution of each term o
Volterra series to the total system response is illustrated
shown that the second-order contribution is neglected. I
second identification method, we use a recursive nonl
infinite impulse response filter to model the NMR spin sys
In this latter case, system identification is equivalent to
estimation of the IIR filter coefficients.

The validity of the two methods is demonstrated with s
ulated NMR signals. The advantages and the limits of
method are analyzed. Our future work will validate th
identification approaches on real NMR signals.

2. NMR SIMULATED SIGNALS

2-1. Simulation Method

Many articles concerning the computer simulation of N
images have been published (5–9). The basic idea of simul
ion is to solve numerically the Bloch equations, in the rota
rame, for each point (voxel) in the object, at each samp
ime during the pulse sequence. This method is valid
escribing the time evolution of spin systems. In our pape
re limited to NMR signal simulation in the case of uncoup
pins (5–9).
Our simulation program starts by defining an object (1D,

r 3D) using a special computer function that creates a b
phere, a cylinder, or any shape given by mathematical ex
ion. This object is spatially sampled, with respect to S
on’s sampling theorem, into small volumes (voxels) w
efined dimensions, local magnetization vector, proton den
nd longitudinal and transversal relaxation times (T1 andT2).

Static magnetic field inhomgeneities and chemical shifts ca
included in the object definition.

The effect of a rectangular RF pulse on a local magnetiz
vector is described by a rotation matrix operator with
knowledge that relaxation is neglected during the excita
period (5–10). This operator can also take into account
presence of magnetic field gradients. RF pulses, with va
B1 field, are modeled by dividing the waveform of the pu
into finite samples in time (small rectangular pulses with
ferent intensities). Each sample is described by its rot
matrix. These matrix operators are applied successively t
magnetic moment, so that the set is quite similar to the a
cation of one pulse with amplitude modulation. Any amplit
modulated RF pulse can be simulated by this technique.
different types of RF pulses are currently available: recta
lar, Gaussian-modulated, sinc-modulated, and random
modulated pulses. Each of them is defined by its dura
central frequency, spectral bandwidth, phase, and flip ang
our identification methods (see Sections 4, 5, and 6), a
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sinc-modulated RF pulse of 1 ms is used as an excit
signal.

Relaxation operators are applied to calculate the resu
the relaxation processes (T1 and T2) and the changes in t
phase of the magnetization, due to applied magnetic
gradients, local magnetic field inhomogeneities, and chem
shifts.

All of the routines of signal simulation are written in
language using the LINUX operating system. The simula
generates a signal (free induction decay, FID) by summin
transverse magnetization of all of the object points at dis
time intervals determined by the sampling rate. This simu
signal is detected in the rotating frame of reference. In
simulations, the input and the output signals are norma
with respect to their maximum amplitudes.

2-2. Examples of Simulated Signals

We consider, for simplicity, a 1D finite cylindrical homog
neous object of axis OZ (Fig. 1). The transversal and
longitudinal relaxation times,T2 andT1, are, respectively, 1
and 100 ms, for all the object voxels. This object is place
a 0.1-T static magnetic field. We neglect the effect of l
magnetic field inhomogeneities and chemical shifts.

As an illustration of the simulated (FID) signals, let us t
the case where a strong linear field gradient (2.5 mT/m
applied along the cylinder axis during a RF excitation p
(1). We calculate the FID in unswitched gradient, i.e.,
gradient is still applied during the signal sampling pe
(1, 10). Figure 2a shows the system response (FID) to a
RF rectangular pulse of 4.25 MHz (Larmor frequency at 0.
with a flip angle of 90°. It can be seen that the form of
response approaches the shape of the RF excitation pulse
result confirms the early work of Hoult and Mansfield
Morris (1, 10). In Fig. 2b, we plotted the FID resulting from t
application of a 90° sinc-modulated RF pulse of 1 ms.
latter FID is used as a reference signal in our identifica
schemes (see Sections 4, 5, and 6).

3. IDENTIFICATION BY ADAPTIVE VOLTERRA
FILTERING

3-1. Volterra Series Expansion for Nonlinear Systems

Let x(n) andy(n) represent the input and the output, resp
tively, of a discrete-time and causal nonlinear system
memory. The relationship between input and output can
generally, expressed as

FIG. 1. A 1D cylindrical homogeneous object 25 cm in length.
longitudinal and the transversal relaxation times are, respectively,T1 5 100

s, T2 5 10 ms for all the object voxels.
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FIG. 2. Simulated FIDs signalsy(n) in response to a 90° rectangular RF pulse of 1 ms (a) and to a 90° sinc RF pulse of 1 ms (b). On theX-axis, 400
samples5 1 ms.
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40 ASFOUR, RAOOF, AND FOURNIER
y~n! 5 f @ x~n!, x~n 2 1!, . . . , x~n 2 N 1 1!#, [2]

here (n) is the sample number andN is the memory length o
he system. The direct identification approach of a system
etermine the functionf that minimizes some suitable defin
rror between a desired output sequencey(n) and the actua
utput sequenceŷ(n). However, for nonlinear systems, t
pproach leads generally to equations that cannot be sol
ny practical manner, which is the case for NMR spin syst
A solution for this problem is to consider a polynom

pproximation to the function appearing in Eq. [2] so that
ystem under investigation can be easily characterized
nalyzed.
Consider the input–output relationship of Eq. [2]. We

umed that the functionf is sufficiently regular in the neig
orhood of the origin. In this casef admits a discrete Volter
eries expansion which converges in a suitable neighbo
f the origin (11). By truncating this series to a finite numb
f terms, we obtain an approximation of the input–ou
elationship of the form

ŷ~n! 5 O
m150

N21

ĥ1~m1! x~n 2 m1! 1 O
m150

N21 O
m250

N21

ĥ2~m1, m2!

3 x~n 2 m1! x~n 2 m2! 1 . . .

1 O
m150

N21 O
m250

N21

. . . O
mp50

N21

ĥp~m1, m2, . . . , mp!

3 x~n 2 m1! x~n 2 m2! . . . x~n 2 mp!. [3]

In this equation,ĥp(m1, m2, . . . , mp) is the pth-order
discrete Volterra kernel of the system. System identificatio
equivalent to the choice of these kernels which in turn c
acterize the system behavior. We can have the desired d
of accuracy by a suitable choice of the orderp as well as
system memory lengthN.

We assume, in the next section, that the Volterra kerne
symmetric, i.e.,hp(m1, m2, . . . , mp) is left unchanged for an
of the possible (p!) 2 permutations of the indicesm1, m2, . . . ,
mp (12). This does not entail any loss of generality, but
omplexity of Eq. [3] is reduced, especially in the case
igh-order kernels (p $ 3), and consequently the calculat

ime is considerably reduced.

-2. System Identification by Second-Order Volterra Ser

For calculation simplicity and without loss of generality,
s consider, for the first time, a second-order (p 5 2) Volterra
eries expansion. The choice of the memory lengthN will be

2 ! Denotes the factorial function.
to

in
s.

e
nd

-

od

t

is
r-
ree

re

e
f

t

iscussed latter. Our goal now is to identify the first- and
econd-order kernels employing adaptive filtering techniq
Figure 3 shows the identification block diagram. The

ayed input signalx(n) is applied to the system under inve
ation which gives the reference signaly(n). The adaptiv

filter would try to estimate the desired response signaly(n)
using a second-order truncated Volterra series expansion
input signalx(n) as

ŷ~n! 5 O
m150

N21

ĥ1~m1:n! x~n 2 m1!

1 O
m150

N21 O
m25m1

N21

ĥ2~m1, m2:n! x~n 2 m1! x~n 2 m2!.

[4]

ĥ1(m1:n) and ĥ2(m1, m2:n) in Eq. [4] are the adaptive filte
coefficients at time (n). These coefficients are iteratively u
dated at each time so as to minimize some function o
quadratic error signal defined as

e2~n! 5 uy~n! 2 ŷ~n!u 2. [5]

For notational simplicity as well as ease of performa
analysis, it is usual to rewrite the expression ofŷ(n) in anothe
form using vector notations3 (12).

ŷ~n! 5 Ĥ 1
T~n! X1~n! 1 Ĥ 2

T~n! X2~n!, [6]

hereĤ 1(n) is the coefficient vector of the first-order ker
(linear filter) andĤ 2(n) is the coefficient vector of the secon
order kernel (quadratic filter) at time (n):

3 [.] T denotes matrix transpose.

FIG. 3. Block diagram of second-order nonlinear adaptive identifica
D is a delay element.
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41NONLINEAR IDENTIFICATION BY ADAPTIVE FILTERING
Ĥ1~n! 5 @ĥ1~0:n!, ĥ1~1:n!, . . . , ĥ1~N 2 1:n!# T [7]

Ĥ2~n! 5 @ĥ2~0, 0:n!, ĥ2~0, 1:n!, . . . ,

ĥ2~0, N 2 1:n!, ĥ2~1, 1:n!, . . . ,

ĥ2~N 2 1, N 2 1:n!# T. [8]

X1(n) andX2(n) are the input vectors to the adaptive filte
time (n). They are defined as

X1~n! 5 @ x~n!, x~n 2 1!, . . . , x~n 2 N 1 1!# T [9]

X2~n! 5 @ x2~n!, x~n! x~n 2 1!, . . . ,

x~n! x~n 2 N 1 1!, x2~n 2 1!,

x~n 2 1! x~n 2 2!, . . . x2~n 2 N 1 1!# T.

[10]

At each time (n), optimum coefficients are determined us
a least mean squares algorithm (LMS). This recursive a
rithm permits one to calculate new coefficients at time (n 1
1). The initial coefficients values at (n 5 0) are forced to zero
The nonlinear adaptive filter is then defined by three recu
equations (12, 13):

e~n! 5 y~n! 2 Ĥ 1
T~n! X1~n! 2 Ĥ 2

T~n! X2~n! [11]

Ĥ1~n 1 1! 5 Ĥ1~n! 1 d1X1~n!e~n! [12]

Ĥ2~n 1 1! 5 Ĥ2~n! 1 d2X2~n!e~n!. [13]

In these equations,d1 and d2 are positive constant facto
(called adaptive gains) that control the stability of the adap
filter and its rate of convergence. If we defines x

2 as an inpu
signal power, it could be shown that the stability of the ad
tive filter can be assured ifd1 andd2 satisfy (13)

0 , d1 ,
2

Ns x
2 [14]

0 , d2 ,
2

~Ns x
2! 2 . [15]

In the next section, we will use the adaptive Volterra filte
model the NMR nonlinear system.

4. NMR SYSTEM IDENTIFICATION BY SECOND-ORDER
VOLTERRA ADAPTIVE FILTERING

The recursive algorithm needs some attentions in the c
of its parameters like the adaptive filter orderN (the memory
length) and the adaptive gains (d1 and d2). These paramete
control, in addition to the stability, the accuracy of the res
during the convergence of the algorithm.
t

o-

e

e

-

ce

s

4-1. Choice ofd1 and d2 for NMR Signals

In NMR, the input signalx(n) and the output signal,y(n) of
the system are, in general, nonstationary. The stability o
adaptive filter depends largely ons x

2, i.e., it depends ond1 and
d2 (see Eqs. [14] and [15]). When using fixed values ford1 and
d2, instability appears for impulsive input signals. To prev
this phenomenon, we consider variabled1 andd2 of the form

d1~n! 5
b1

Ns x
2~n!

[16]

d2~n! 5
b2

~Ns x
2~n!! 2 . [17]

b1 and b2 are small positive constant factors.s x
2(n) is an

estimation of the input signal power at time (n). The mos
direct estimation ofs x

2(n) is given by (13)

s x
2~n! 5 s0 1

1

N0
O
i50

N021

x2~n 2 i !, [18]

heres0 is a positive constant which avoids division by ze
The parameterN0, time observation window, is the peri
during which the signal could be considered stationary.

4-2. Identification Results

The adaptive identification algorithm is programmed u
MATLAB. As an illustration of the identification results, let
consider the object described in Fig. 1. The input signalx(n) is
a 90° sinc pulse of 1 ms. The correspondent output signaly(n)
is the one shown in Fig. 2b. The convergence of the algor
is obtained rapidly with a suitable choice of the parameterb 1,
b 2, N0, ands0. For example,b1 5 0.25,b2 5 0.0025,s0 5
0.08, andN0 5 20 are chosen, in the case ofN 5 64, to assur
convergence and to have a minimum residual mean-s
error (MSE). We introduce a delay element (D) in the identi-
fication block diagram (Fig. 3) for convergence rapidity
results enhancement (14). The value ofD depends on the filte

rderN and on the model to estimate. ForN 5 64 the dela
lement is of 200 samples. An estimation of the first- and
econd-order kernels is then obtained. These kernels are
ed in Figs. 4a and 4b for two values of the filter order (N 5
4 and 128). In the two cases, the first-order kernel
ID-like function, which is a well-known result (2, 4). The rea
nd the imaginary parts of the Fourier transform of this ke
re proportional, respectively, to the absorption and the
ersion components (see Fig. 5).

-3. Choice of the Filter Order N

After convergence of the adaptive algorithm, the
esulting kernels are the best description of the NMR m
n the sense of the mean-square error. In this case, on
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42 ASFOUR, RAOOF, AND FOURNIER
filter order N controls the accuracy of results. This para
ter is chosen to minimize the residual MSE after con
ence. We show in Fig. 6 the variation of the minim
esidual MSE, averaged over the last 100 samples,
unction of N. We observe that forN larger than 64 th
esidual mean-square error is practically unchanged.

FIG. 4. (a) The first- and the second-order kernels,h1(m1) andh2(m1, m
m2), for N 5 128.
-
r-

a

he

filter order should be greater than the effective transve
relaxation timeT*2 divided by the sampling periodTe:

N .
T*2
Te

. [19]

for N 5 64. (b) The first- and the second-order kernels,h1(m1) andh2(m1,
2),
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FIG. 4—Continued
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FIG. 5. The real (absorption) and the imaginary (dispersion) parts of the Fourier transform of the first-order kernel forN 5 64.
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45NONLINEAR IDENTIFICATION BY ADAPTIVE FILTERING
This result assumes that the period of the input sign
greater than four timesT*2. Once noncorrelated experimen
noise is present, the accuracy of the results is expect
improve withN increasing beyond 64.

4-4. Discussion

We show that the NMR system can be modeled by a li
filter in parallel with a quadratic filter with no feedback as
of Blümich and Ziessow’s model (2). This model is tested b
applying an excitation signalx(n) (a 90° sinc RF pulse of 1 m
to the filters system input. The resulting output signal forN 5
64 is shown together with the reference signaly(n) in Fig. 7.
The best accuracy can be obtained for higher filter order

It is important to evaluate here the contribution of each fi
i.e., the linear part and the quadratic part. The results
presented in Fig. 8. We can see that the contribution o
second-order filter, in the system response, is small wit
spect to the contribution of the linear filter. In fact, in NM
since the response changes sign when the RF excitat
changed in sign, the response is an odd function of the
tation, and all even-order responses of Volterra series d
pear (4). However, in our identification, the truncation of
Volterra series leads to some contribution of the second

FIG. 6. The residual mean-square e
is
l
to

ar
t

r,
re
e

e-

is
ci-
p-

er

in the system response. In order to emphasize this fact a
have more accurate results, we extend our development
third order.

5. NMR SYSTEM IDENTIFICATION BY THIRD-ORDER
VOLTERRA ADAPTIVE FILTERING

When we take into account the third-order kernel in
Volterra series, Eq. [3] becomes

ŷ~n! 5 O
m150

N21

ĥ1~m1:n! x~n 2 m1!

1 O
m150

N21 O
m25m1

N21

ĥ2~m1, m2:n! x~n 2 m1! x~n 2 m2!

1 O
m150

N21 O
m25m1

N21 O
m35m2

N21

ĥ3~m1, m2, m3:n!

3 x~n 2 m1! x~n 2 m2! x~n 2 m3!. [20]

Consequently, the third-order nonlinear adaptive filter is
fined by

r (MSE) as a function of the filter orderN.
rro
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46 ASFOUR, RAOOF, AND FOURNIER
e~n! 5 y~n! 2 Ĥ 1
T~n! X1~n!

2 Ĥ 2
T~n! X2~n! 2 Ĥ 3

T~n! X3~n! [21]

Ĥ3~n 1 1! 5 Ĥ3~n! 1 d3X3~n!e~n!. [22]

ˆ
3(n) is the coefficient vector of the third-order kernel at t

(n) andX3(n) is the correspondent input vector.Ĥ 1(n), Ĥ 2(n),
X1(n), andX2(n) are defined by Eqs. [7], [8], [9], and [10
respectively.d3 is a positive factor that must satisfy 0, d 3 ,
2/(Ns x

2) 3 to assure the stability of the adaptive filter. In pr-
tice, we use a variable form ford3 which changes with respe
to s x

2.
For N 5 64, the convergence of the algorithm is obtai

rapidly and we get an estimation of the first three Volt
kernels. In this case, three parallel filters (first, second,
third order) model the NMR spin system. Figure 9 shows
reference signal together with the output of the filters sy
for the same excitation signal (a 90° sinc RF pulse of 1
The accuracy of the results is improved (compared with Fig
The contributions of the three filters to the total system
sponse are illustrated in Fig. 10. This time, the second-o
contribution is very small compared to the first-order and
third-order contributions. The third-order term appears cle
and its maximum contribution is about 6% of the total resp
of the system. We emphasize the disappearance of even
in the Volterra series. It is important to notice that the lin
approximation of NMR system is good even for large

FIG. 7. The reference FID signal and the signal at the output of the
s. The filter order isN 5 64.
d
a
d
e
m
).
).
-
er
e
ly
e
ers
r

angles. However, in the case where the SNR of the NMR s
is low, taking into account the third-order term may per
more accurate signal processing and analysis.

Our model is attractive since the expansion is a li
combination of a nonlinear function of the input signal. T
output signal is no more than simple convolution prod
between combinations of the input signal and the kernels.
fact is important for real implementation of optimum NM
signal detection and processing systems and for future d
opment of accurate spectral analysis and signal estimatio
example, when the NMR signal-to-noise ratio is low, ide
fying the NMR system in this practical manner may condu
the optimum matched filter.

6. ADAPTIVE FILTERING IDENTIFICATION USING
RECURSIVE NONLINEAR IIR FILTER

The major problem associated with Volterra series repre
tation of nonlinear systems is that, in some cases, a very
filter order (a large number of coefficients) is required
describe the nonlinear model. In such a case, the dis
Volterra series is not the adequate model. Consequently
important to search for an alternative model. One such m
is the recursive nonlinear IIR filter whose input–output r
tionship is governed by a recursive nonlinear difference e
tion with constant coefficients (12).

ers system (linear and quadratic filters) for a 90° sinc-modulated input
filt
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47NONLINEAR IDENTIFICATION BY ADAPTIVE FILTERING
6-1. Recursive Nonlinear Systems

The simplest of nonlinear recursive systems is the on
which the input–output relationship is given by (12)

y~n! 5 O
i51

N21

c~i ! y~n 2 i !

1 O
i50

N21 O
j51

N21

b~i , j ! y~n 2 j ! x~n 2 i !

1 O
i50

N21

a~i ! x~n 2 i !. [23]

his system representation can model nonlinear systems
ewer coefficients, i.e.,a(i ), b(i , j ), andc(i ), than the Volterr
eries representation. The block diagram of a recursive
inear system for the case ofN 5 2 is shown in Fig. 11. Her

21 represents the unit memory element that simply delay
signal passing through it by one sample.a(0) and a(1) are
called forward coefficients andc(1) is the backward coeffi
cient. b(0, 1) and b(1, 1) are the nonlinear coefficien
Equation [23] is then written as

y~n! 5 c~1! y~n 2 1! 1 b~0, 1! y~n 2 1! x~n!

1 b~1, 1! y~n 2 1! x~n 2 1!

1 a~0! x~n! 1 a~1! x~n 2 1!. [24]

FIG. 8. The contributions of the first- and the second-order terms to t
in

ith

n-

he

t each sample (n), the output signal of this recursive syst
s calculated using the input signal at time (n) and at time (n 2
) but also using the output signal at time (n 2 1).

-2. Adaptive Recursive Identification

In this section we would like to identify a NMR spin syst
ith a recursive nonlinear IIR filter. In other words, we will

o calculate the coefficientsa(i ), b(i , j ), andc(i ) (the coeffi-
ients of the IIR filter) using, once again, an adaptive filte
echnique. The identification block diagram is shown in
2. For a given value ofN, the adaptive filter estimates t
utput signalŷ(n) using the lastN values of the input sign
(n) and the last (N 2 1) values of the reference signaly(n)
12, 15). The coefficients are updated at each sample (n) in
rder to minimize the quadratic error betweeny(n) and ŷ(n).
he recursive nonlinear adaptive filtering algorithm is defi
y

e~n! 5 y~n! 2 ÂT~n! X~n!

2 B̂T~n! XY~n! 2 ĈT~n!Y~n! [25]

Â~n 1 1! 5 Â1~n! 1 daX~n!e~n! [26]

B̂~n 1 1! 5 B̂~n! 1 dbXY~n!e~n! [27]

Ĉ~n 1 1! 5 Ĉ~n! 1 dcY~n!e~n!, [28]

heree(n) is the calculated error between the actual resp
ˆ (n) and the reference signaly(n), and

system response. The second-order term forms less than 2% of the tota



lated input

48 ASFOUR, RAOOF, AND FOURNIER
FIG. 9. The reference FID signal and the signal at the output of the filters system (linear, quadratic, and third-order filters) for a 90° sinc-modu
signal of 1 ms. The filter order isN 5 64.
about 6% of
FIG. 10. The contributions of the three filters to the system response. The second-order term is neglected. The third-order term contributes to
the total response.
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49NONLINEAR IDENTIFICATION BY ADAPTIVE FILTERING
Â~n! 5 @â~0:n!, â~1:n!, . . . , â~N 2 1:n!# [29]

B̂~n! 5 @b̂~0, 1:n!, b̂~0, 2:n!, . . . , b̂~N 2 1, N 2 1:n!#

[30]
Ĉ~n! 5 @ĉ~1:n!, ĉ~2:n!, . . . , ĉ~N 2 1:n!# [31]

re the adaptive filter coefficient vectors at time (n). The
ectors

X~n! 5 @ x~n!, x~n 2 1!, . . . , x~n 2 N 1 1!# [32]

XY~n! 5 @ x~n! y~n 2 1!, x~n! y~n 2 2!, . . . ,

x~n 2 N 1 1! y~n 2 N 1 1!# [33]

Y~n! 5 @ y~n 2 1!, y~n 2 2!, . . . , y~n 2 N 1 1!#

[34]

re the input vectors to the adaptive filter. Finally,d a, d b, and
d c are the adaptive gains that are calculated at each timen) to
assure the stability of the algorithm.

FIG. 11. Block diagram of a recursive nonlinear system of o
5 2.

FIG. 12. Block diagram of the identification of NMR system with
recursive nonlinear system.D is a delay element.
6-3. Results of the Recursive Nonlinear Identification

Consider the 1D homogeneous object described on F
Let us take, once again, a 90° sinc-modulated pulse of 1
The system response (reference signal) is the one presen
Fig. 2b. The coefficientsa(i ), b(i , j ), andc(i ), obtained afte
convergence, are plotted in Fig. 13 in the case ofN 5 24.
These coefficients are the best estimation of the NMR mod
the sense of mean square error. Figure 14 shows the refe

r

FIG. 13. The coefficients of the recursive nonlinear IIR filter obtained
adaptive filtering forN 5 24.
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signal together with the signal calculated using the coeffic
of Fig. 13 (i.e., the signal at the output of the IIR filter). T
initial values of this latter signal are forced to zero.

The key advantage of this recursive nonlinear mod
that it is possible to represent the NMR systems with r
tively fewer coefficients when compared with Volterra s
tem representation. The residual mean-square error—
convergence—for the recursive model of order 24 is sm
than the residual MSE for the Volterra model of order
However, the recursive model cannot be reduced to sep
convolution products as the Volterra model can. Thus,
recursive model cannot replace entirely the Volterra re
sentation. Each model has its advantages and its sp
limits. The issue of which one to use depends on the n
of application. In practice, the Volterra model could
employed in filtering problems where there is a requirem
for linear-phase characteristics, especially for the lin
part. If there is no requirement for linear-phase, either
Volterra model or the recursive model may be emplo
However, if some phase distortion is tolerable, the recur
model is preferable because its implementation invo
fewer coefficients, fewer memory requirements, and lo
calculation time and complexity.

CONCLUSION

We present, in this paper, two new methods for identif
NMR spin systems employing nonlinear adaptive filte

FIG. 14. The reference signal and the signal calculated with the
ts

is
-

-
ter
er
.
ate
is
e-
ific
re

nt
r
e
.
e
s
r

g

techniques. The first method is based on discrete Vo
series development of the system response. The first
kernels of this series are estimated using the least mean s
algorithm. Three parallel filters modeled the NMR spin sys
so that its output is no more than simple convolution prod
between filters coefficients and combinations of the input
nal. The contribution, to the total system response, of
second-order term of the Volterra series is shown to be
glected. In the second method, the input–output relationsh
the system is described by a recursive nonlinear differ
equation with constant coefficients. The LMS algorithm
employed to calculate these coefficients.

Our identification methods can be useful for better t
description and nonlinear spectral analysis of NMR sign
They are promising for real implementation of optimum N
signal detection and processing systems. Our future work
validate these models on real NMR signals.
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